

# **Ben Ritter**

Sales Executive Shrink Sleeve & Converting Specialist Sales and Marketing

# Accraply



25 - 27 September - Chicago **LABELEXPO AMERICAS 2018** www.labelexpo-americas.com

# **Converting Heat Shrink Sleeve Labels** Slitting, Seaming, and Inspection



### **The Shrink Process**



# **Converting** Process





# Slitting | What to avoid









# **Slitting** Methods



### Slitting Methods | Shear

Shear is the recommended method for slitting shrink film.



PVC Shrink Film Shear Slit @ 50x



PVC Shrink Film Razor Slit @ 50x



#### SlittingMethods | Shear

The concept of Shear Slitting uses two circular blades to cut a moving web at the point where the two blades contact each other.





- More suitable for thin, flexible webs
- Wrap curvature opposes vertical deflection
- Especially suitable for thick, more rigid webs
- Flat web geometry does not inhibit vertical deflection



The depth (overlap) is set by how far the tangent point of the top blade is engaged beyond the tangent point of the bottom blade.



The cant angle is designed to force the shear knife contact to the overlap entrance point



Cant Angle (Degrees)

- 0.0<sup>o</sup> to 0.25<sup>o</sup>
- 0.25<sup>°</sup> to 0.50<sup>°</sup>
- 0.50<sup>°</sup> to 0.75<sup>°</sup>
- 0.75° to 1.0°

#### Material

- Metals, Plastic Sheet, Hard Web, Brittle Web
- <u>General Purpose Angle</u>, Plastic Film, Laminates
- Synthetic Fiber Products, Stretchy Films
- Fabrics, Un-bonded, Non-woven



- Typical for Wrap Shear
- Three main **top** blade profiles primary angles of 25<sup>o</sup>, 45<sup>o</sup>, or 60<sup>o</sup>





#### **Seaming Step**

• Objective



From

- In order to
  - Maximize throughput (a function of speed and up-time on equipment)
  - Minimize waste (a function of 'ingredients', equipment and the training, knowledge and experience of people)







#### Chemical Reaction Areas- Required for Solvent Weld



#### Seaming Step | What to Avoid

#### **Good Solvent Placement**

- To the edge, without going over —
- Consistent width
- Consistent amount
- Note: Solvent represented in purple
- Note: Inside edge represented by green dotted line \_
- Note: Outside edge represented by blue dotted line \_

#### **Bad Solvent Placement**







Not to the outside edge of the overlap

Past the outside edge of the overlap

Skips/Voids

flow



# Seamer Concepts | Solvent Control



### Seamer Concepts | Solvent Delivery Methods

Key elements in the seaming process.







el

Top Wick







Needle







### Seamer Concepts | Solvents

- Not a glue
- Chemistry must be right
- Inexpensive, until you get it wrong





### Seamer Concepts | Solvent Delivery Locations



# Seamer Concepts | Folding/Forming











Fixed Size

Manual

Semi-automatic

Fully Automatic

Automatic Table With Seam Location





# Seamer Concepts | Rewind Oscillation











# Seamer Concepts | Monitoring & Control





Operator

**Optical with Indicator** 





Ultrasonic with Compact Flash



MMA





### **Finishing Step**

Do I need to inspect after seaming?

- Past/Current Paradigm: Yes
  - Check Seam
  - Check Layflat
  - Repair Splices
  - Change Core Size
  - Check Print
- Present/Future: Debate
  - Non-stop, or partially non-stop, seaming capabilities open the door to eliminate the finishing step





### **Sheeting Step**

Unlike any other sheeting process in your operation, it must be able to perforate, in register.



Linear Perforation

#### Sheeter- Perforation

Stand-Alone Unit

#### Integral Unit

































PO

### **Recognizing** a Well-converted Sleeve

- No open, weak, or stuck seams
- Limited variation in the layflat width
- No crushed edges (u-fold, not v-fold)







Pennzoil: Courtesy SleeveCo.



#### Summary

The secondary converting steps have impact on the quality of the finished label on the shelf, and each step requires a focus on "getting it right."

#### Always

- Use the best ingredients film, ink, seaming solvents, equipment, people, process
- Focus on shipping only quality and be consistent
- Minimize waste
- Realize there are no shortcuts



# **Converting** | Questions?

### Thank you for attending

#### **Ben Ritter**

Sales Executive Shrink Sleeve & Converting Specialist

